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Abstract—Automatically parallelizing loop nests into CUDA
kernels must exploit the full potential of GPUs to obtain high
performance. One state-of-the-art approach makes use of the
polyhedral model to extract parallelism from a loop nest by
applying a sequence of affine transformations to the loop nest.
However, how to automate this process to exploit both intra-
and inter-SM parallelism for GPUs remains a challenging
problem. Presently, compilers may generate code significantly
slower than hand-optimized code for certain applications.

This paper describes a compiler framework for tiling and
parallelizing loop nests with uniform dependences into CUDA
code. We aim to improve two levels of wavefront paral-
lelism. We find tiling hyperplanes by embedding parallelism-
enhancing constraints in the polyhedral model to maximize
intra-tile, i.e., intra-SM parallelism. This improves the load
balance among the SPs in an SM executing a wavefront of loop
iterations within a tile. We eliminate parallelism-hindering false
dependences to maximize inter-tile, i.e., inter-SM parallelism.
This improves the load balance among the SMs executing a
wavefront of tiles. Our approach has been implemented in
PLUTO and validated using eight benchmarks on two different
NVIDIA GPUs (C1060 and C2050). Compared to PLUTO, our
approach achieves 2 – 5.5X speedups across the benchmarks.
Compared to highly hand-optimized 1-D Jacobi (3 points), 2-D
Jacobi (5 points), 3-D Jacobi (7 points) and 3-D Jacobi (27
points), our speedups, 1.17X, 1.41X, 0.97X and 0.87X with an
average of 1.10X on C1060 and 1.24X, 1.20X, 0.86X and 0.95X
with an average of 1.06X on C2050, are competitive.
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I. INTRODUCTION

Parallelization of loop nests continues to drive much of
the ongoing research in parallel computing. Loop nests
with uniform dependences are widely used in scientific
and engineering applications, including image processing,
computational electromagnetics and numerical analysis [10],
[26], [31], [36], [37], [38]. Their efficient implementation
on GPUs is becoming increasingly important as GPUs
have recently emerged as powerful fine-grained parallel co-
processors for general-purpose computing.

Traditionally, the concept of uniform dependence applies
only to a set of perfectly nested loops. In this paper, we
consider both perfectly and imperfectly nested loops with
uniform dependences. Given a loop nest (normalized with all
loops in the same depth being associated with the same loop
variable), a dependence between two references is uniform if

f o r ( t =1 ; t<=T ; t ++){ / / DOSEQ
f o r ( i =1 ; i<=I ; i ++) / / DOALL

S0 : B[ i ] = (A[ i −1]+A[ i ]+A[ i + 1 ] ) / 3 ;
f o r ( i =1 ; i<=I ; i ++) / / DOALL

S1 : A[ i ]=B[ i ] ;
}

(a) Jacobi: imperfectly nested loops

f o r ( t =1 ; t<=T ; t ++){ / / DOSEQ
f o r ( i =1 ; i<=I ; i ++) / / DOACROSS

S : A[ i ] = (A[ i −1]+A[ i ]+A[ i + 1 ] ) / 3 ;
}

(b) SOR: perfectly nested loops

Figure 1: Loop nests with uniform dependences.

their dependence distance is constant. Jacobi and SOR, given
in Figure 1, are imperfectly and perfectly nested loops with
uniform dependences, respectively.

In this paper, we restrict ourselves to stencil computations.
There are several studies on parallelizing stencil compu-
tations on GPUs by hand [8], [22], [25], [37]. However,
manual development of high-performance CUDA kernels
can be time-consuming and error-prone. Among several al-
ternative approaches, automatic parallelization is promising
yet challenging. Recently, based on the polyhedral model,
attempts have been made to implement automatic C-to-
CUDA parallelizing compilers for GPUs [2], [4], [28].

An important open problem faced by the polyhedral model
is how to synthesize a sequence of affine transformations
from a huge space of valid solutions. To execute a tiled
loop nest efficiently on a cluster of CPU nodes, one well-
known communication-minimal approach is to find appro-
priate tiling hyperplanes so that the inter-tile communication
is miminized [6], [40]. Although a significant body of prior
work focuses on optimizing hyperplane generation strategies
and tiling heuristics [1], [13], [14], [17], [21], [29], [30],
these existing solutions, once directly deployed for GPUs,
lead to poor performance for some applications.

In GPUs, the degree of parallelism across the Streaming
Multiprocessors (SMs) and among the Streaming Processors
(SPs) in an SM is the key to improving performance [3],



[15], [34]. To parallelize a tiled loop nest on GPUs, the
wavefronts within a tile are pipelined for parallel execution
to exploit intra-SM parallelism and the wavefronts across
the tiles are pipelined for parallel execution to exploit inter-
SM parallelism. By applying directly the CPUs-oriented
communication-minimal approach [6], [40], [41] to GPUs,
severe load imbalance may occur due to pipeline fill-up and
drain delay. In this work, we overcome this limitation by
employing two new parallelism-exposing transformations for
GPUs. This paper makes the following contributions:
• We introduce an affine tiling framework that performs

automatic C-to-CUDA parallelization from loop nests
with uniform dependences. Our framework aims to
maximize two levels of wavefront parallelism by re-
ducing pipeline fill-up and drain delay: intra-tile, i.e.,
intra-SM parallelism by finding appropriate tiling hy-
perplanes and inter-tile, i.e., inter-SM parallelism by
eliminating parallelism-hindering false dependences.

• We have compared our framework with PLUTO, an
existing C-to-CUDA compiler [4], using eight stencil
kernels and some hand-tuned code on two NVIDIA
GPUs, C1060 and C2050. Compared to PLUTO, our
speedups are 2 – 5.5X for these benchmarks. Compared
to highly hand-optimized 1-D Jacobi (3 points), 2-D
Jacobi (5 points), 3-D Jacobi (7 points) and 3-D Jacobi
(27 points), our speedups, 1.17X, 1.41X, 0.97X and
0.87X with an average of 1.10X on C1060 and 1.24X,
1.20X, 0.86X and 0.95X with an average of 1.06X on
C2050, are considered to be competitive.

Our preliminary results demonstrate that the two optimiza-
tions proposed for GPUs are quite promising.

II. BACKGROUND

A. GPU Architecture and CUDA Programming Model
1) Two-Level Parallelism: The GPU architecture is based

on a scalable array of SMs. Each SM comprises a number
of SPs. An execution of a CUDA kernel launches a set of
thread blocks and each thread block can contain hundreds
of threads, with every 32 threads grouped into a warp. SPs
on one SM execute a warp of 32 threads at a time; and all
threads in one block are not able to be executed on two or
more SMs at a time. Since threads from different blocks can
be executed on SMs concurrently, there exist two-levels of
fine-grained parallelism for a running kernel: inter-SM and
intra-SM (i.e., among the SPs in the same SM).

2) Bank Conflicts: Bank conflicts occur when the threads
in one warp access different shared memory addresses in
the same bank. The threads with bank conflicts are forced to
access shared memory sequentially. According to [27], if the
threads in one warp access a sequence of continuous shared
memory addresses (i.e., exhibit stride-1 assesses), there will
be no bank conflicts. If the accesses are made in stride-2,
for example, two-way bank conflicts will occur. Then a pair
of threads must each wait for the other to finish.

f o r ( t =1 ; t<=T ; t ++)
f o r ( i =1 ; i<=I ; i ++)

S : A[ i ] = 0 . 5∗ (A[ i ]+A[ i + 1 ] ) ;

Figure 2: A motivating example.

S: A[i] = 0.5*( A[i] + A[i+1] )

(0, 1)

(1,−1)

(1, 0)

(1, 0)

(1, 0)

flow
anti
output

Figure 3: DDG for the loop nest given in Figure 2 with each
dependence labelled by its distance vector.

B. Loop Transformations

1) Polyhedral Representation: An m-D loop nest can be
represented by a polyhedron, which is a set of points sur-
rounded by finitely many hyperplanes and can be described
by a set of affine inequalities. For example, the loop nest in
Figure 2 can be statement-wisely represented as follows:

Rs

~iS~g
1

 =


1 0 0 0 −1
−1 0 1 0 0
0 1 0 0 −1
0 −1 0 1 0



t
i
T
I
1

 ≥ 0 (1)

where RS is an affine matrix representing the loop bound
constraints, ~iS is the iteration vector, and ~g is a vector of
global parameters (which are usually the loop bounds).

2) Dependence: Data dependence analysis for arrays
determines when two array references refer to the same
element. The data dependence graph (DDG) G = (V,E)
is a directed multi-graph with each vertex representing a
statement S and an edge eSs,St

∈ E from Ss to St indicating
a dependence between the source and target conflicting
accesses in Ss and St, respectively. DS is the iteration space
of statement S. If ~is ∈ DSs and ~it ∈ DSt are dependent
through edge eSs,St

∈ E, we write 〈~is,~it〉 ∈ PeSs,St
,

where PeSs,St
is the dependence polyhedron of eSs,St

. In
the important special case when ~it −~is is a constant ~d for
all 〈~is,~it〉 ∈ PeSs,St

, then ~d =~it−~is is known as a distance
vector. A loop nest is said to have uniform dependences if
all its dependences can be expressed as distance vectors.

The loop nest given in Figure 2 has only uniform de-
pendences. Table I lists its five dependences and their
dependence polyhedra. As is customary, flow (i.e., RAW)
dependences are true dependences and anti (i.e., WAR) and



output (i.e., WAW) dependences are false dependences. The
DDG for this example is shown in Figure 3.

3) Affine Transformations: A 1-D affine transformation
for statement S is an affine function defined by:

φS(~iS) = (c1, . . . , cm)~iS + αS (2)

where (c1, . . . , cm),~iS ∈ Zm and αS ∈ Z. φS can be
interpreted as a partitioning hyperplane with its normal being
(c1, . . . , cm), which maps each instance of statement S to a
new instance in the 1-D transformed iteration space.

An m-D affine tiling transformation ΦS is represented as
a set of m linearly independent 1-D affine functions. If φkS
represents the k-th affine function (tiling hyperplanes), then
ΦS = (φ1S , . . . , φ

m
S ) maps each instance of statement S into

a new instance in the m-D transformed iteration space.

III. TWO-LEVEL PARALLELISM TRANSFORMATIONS

In this section, we introduce our framework to tiling
and parallelizing loop nests with uniform dependences to
exploit both intra- and inter-SM parallelism on GPUs. Our
example is given in Figure 2. In Section III-A, we review
the communication-minimal tiling transformations built for
a cluster of CPU nodes [6], [40], [41] and see how they
may lead to poor performance on GPUs due to long pipeline
fill-up and drain delay. We overcome such load imbalance
in two ways. In Section III-B, we improve intra-tile paral-
lelism by finding better tiling hyperplanes in the polyhedral
model. In Section III-C, we improve inter-tile parallelism by
eliminating parallelism-hindering false dependences.

A. Communication-Minimal Transformations

To preserve the dependences in a given loop nest, a legal
tiling must satisfy all its dependences [5], [40], [41].

Theorem 1 (Legality of Tiling). Consider a loop nest with
G = (V,E) as its DDG. ΦS1

,ΦS2
, . . . are legal (statement-

wise) tiling hyperplanes iff ∀eSs,St
∈ E, ∀k ∈ [1,m]:

φkSt
(~it)− φkSs

(~is) ≥ 0, 〈~is,~it〉 ∈ PeSs,St
(3)

Consider the example in Figure 2 with the five depen-
dences listed in Table I. To construct its tiling hyperplanes
ΦS ∈ Z2×2, we apply this theorem to the example. There are
many valid solutions with different degrees of parallelism,
which will have varying degrees of impact on performance.
For the purposes of minimizing the inter-tile communication,
ΦS = [ 1 0

1 1 ] [ ti ] + [ 00 ], which is illustrated in Figure 4, is
recommended [6], [40], [41]. In the figure, different in-
stances of statement S are represented by dots. In the larger
tile on the right, the solid/dashed/dotted arrows denoting
flow/anti/output dependences between loop iterations. In the
center, the three dependences between tiles are also depicted
(without distinguishing flow from false dependences).

Given this tiling transformation, we can map tiles to thread
blocks and loop iterations in a tile to the threads in a block by
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Figure 4: Iteration space tiling of the loop nest in Figure 2
with ΦS = [ 1 0

1 1 ] [ ti ] + [ 00 ]. The tile size used is 2× 2.

exploiting two levels of wavefront parallelism. In the CUDA
code given in Figure 5, the first two loops enumerate all the
tiles and the inner two the loop iterations within a tile.

To satisfy the three inter-tile data dependences, the tiles
are grouped into wavefronts, which are pipelined for parallel
execution along the direction (1, 1) in the iteration space
representing the tiles. One wavefront is highlighted with
its tiles depicted in gray. To exploit inter-tile parallelism,
different wavefronts are executed sequentially in a pipelined
manner while the tiles in the same wavefront can be executed
in parallel on different SMs. Therefore, the SMs are synchro-
nized every time after a wavefront has been executed.

Like inter-tile wavefronts, the loop iterations in a tile are
also scheduled to exploit intra-tile wavefront parallelism, as
illustrated in the right part of Figure 4. To satisfy the five
intra-tile dependences, the wavefronts in a tile are pipelined
along (2, 1) and the loop iterations in the same wavefront
can be executed in parallel in different threads on the SPs
(in an SM). Due to coalesced loads and stores used, these
threads are synchronized at the end of each wavefront.

However, minimizing inter-tile communication alone of-
ten leads to long pipeline fill-up and drain delay for both
intra- and inter-tile wavefronts, as can be visualized in
Figure 4. The resulting load imbalance, which may be
insignificant for a cluster of CPUs, can be problematic



Dependence Type Source ~is Target ~it Distance Dependence Polyhedron
(ts, is) (tt, it) vector ~d

e1: from A[i] (LHS) to A[i] (RHS) flow (t, i) (t+ 1, i) (1, 0) Pe1 : ts = tt − 1, is = it, 2 ≤ tt ≤ T , 1 ≤ it ≤ I
e2: from A[i] (LHS) to A[i+1] (RHS) flow (t, i) (t+ 1, i− 1) (1,−1) Pe2 : ts = tt − 1, is = it + 1, 2 ≤ tt ≤ T , 1 ≤ it ≤ I − 1
e3: from A[i+1] (RHS) to A[i] (LHS) anti (t, i) (t, i+ 1) (0, 1) Pe3 : ts = tt, is + 1 = it, 1 ≤ tt ≤ T , 1 ≤ it ≤ I − 1
e4: from A[i] (RHS) to A[i] (LHS) anti (t, i) (t+ 1, i) (1, 0) Pe4: ts + 1 = tt, is = it, 1 ≤ tt ≤ T − 1, 1 ≤ it ≤ I
e5: from A[i] (LHS) to A[i] (LHS) output (t, i) (t+ 1, i) (1, 0) Pe5 : ts + 1 = tt, is = it, 1 ≤ tt ≤ T − 1, 1 ≤ it ≤ I

Table I: Dependences in the loop nest given in Figure 2.

/∗ I n t e r− t i l e l o o p s ∗ /
f o r ( t t =0 ; t t <=f l o o r (2∗T+I , 2 5 6 ) ; t t ++){ / / DOSEQ

f o r ( i i =max ( c e i l ( t t , 2 ) , c e i l (256∗ t t−T , 2 5 6 ) ) + b l o c k I d x . x ;
i i <=min ( f l o o r ( T+I , 2 5 6 ) , f l o o r (256∗ t t + I +255 ,512) , t t ) ; i i += gridDim . x ) { / / DOALL

/∗ I n t r a− t i l e l o o p s ∗ /
/∗ Code f o r c o a l e s c e d l o a d s from s h a r e d memory ∗ /
f o r ( t ’=max (3 ,256∗ t t , 256∗ i i +1 ,512∗ i i−I , 512∗ t t −512∗ i i +1) ;

t ’<=min (2∗T+I ,256∗ t t +510 ,512∗ i i +509 ,256∗ i i +T+255 ,512∗ t t −512∗ i i + I +510) ; t ’ ++){ / / DOSEQ
f o r ( i ’=max ( c e i l ( t ’ +1 ,2 ) ,256∗ i i , t ’−T,−256∗ t t +256∗ i i + t ’−255)+ t h r e a d I d x . x ;

i ’<=min ( f l o o r ( t ’+I , 2 ) ,256∗ i i +255 , t ’−1,−256∗ t t +256∗ i i + t ’ ) ; i ’+=blockDim . x ) / / DOALL
S : A[− t ’ +2∗ i ’ ] = 0 . 5∗ (A[− t ’ +2∗ i ’ ]+A[− t ’ +2∗ i ’ + 1 ] ) ;

s y n c t h r e a d s ( ) ;
}
/∗ Code f o r c o a l e s c e d s t o r e s i n t o s h a r e d memory ∗ /

}
/∗ Code f o r s y n c h r o n i z i n g b l o c k s ∗ /

}

Figure 5: CUDA kernel generated for the code in Figure 2 using the communication-minimal tiling hyperplanes in Figure 4.

for GPUs that rely on massive fine-grained parallelism to
achieve high performance. To alleviate this problem, Sec-
tion III-B focuses on improving intra-tile parallelism while
Section III-C focuses on improving inter-tile parallelism.

B. Improving Intra-Tile Parallelism
We improve intra-tile parallelism by embedding

parallelism-enhancing constraints in the polyhedral model
so that better tiling hyperplanes can be found.

Definition 1 (Balanced Intra-Tile Wavefronts). The wave-
fronts for a statement S in a tile are balanced if they are
pipelined along the normal of a tiling hyperplane in ΦS .

In practice, this implies that statement S will be executed
the same number of times in all its intra-tile wavefronts.

Theorem 2. Consider a loop nest with G = (V,E) as its
DDG. Let ΦS1 ,ΦS2 , . . . be its legal tiling hyperplanes. If
there exists a k ∈ [1,m] such that

φkS(~it)− φkS(~is) ≥ 1, 〈~is,~it〉 ∈ PeS,S
(4)

for all self dependences eS,S ∈ E, then the intra-tile
wavefronts for every statement S are balanced.

Proof: Follows from Theorem 1 and Definition 1.
By combining the constraints given in (4) with those given

in (3), Φintra
S = [ 2 1

1 1 ] [ ti ] + [ 00 ] is found. As illustrated in
Figure 6, statement S is executed the same number of times
in all intra-tile wavefronts. Therefore, the SPs executing S
in a tile are sufficiently utilized with perfect load balance.
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Figure 6: Iteration space tiling of the loop nest in Figure 2
with Φintra

S = [ 2 1
1 1 ] [ ti ] + [ 00 ]. The tile size used is 2× 2.



Algorithm 1: Generating tiling hyperplanes
Input: Data dependence graph G = (V,E)
Output: Tiling hyperplanes ΦS1 ,ΦS2 , . . .

1 Build legality constraints (3);
2 Add constraints for achieving balanced intra-tile

wavefronts (4) by setting k = 1;
3 Find tiling hyperplanes by applying [6], [40], [41];

A0 [ I +1]=A[ I + 1 ] ;
f o r ( t =1 ; t<=T ; t ++){

f o r ( i =2 ; i<=I ; i ++)
S0 : A0 [ i ]=A[ i ] ;

f o r ( i =1 ; i<=I ; i ++)
S1 : A[ i ] = 0 . 5∗ (A[ i ]+A0 [ i + 1 ] ) ;
}

Figure 7: Transformed code by eliminating anti dependence
(0, 1) via array copying for the loop nest given in Figure 2.

As shown in Algorithm 1, the tiling hyperplanes can be
found by applying the techniques described in [6], [40],
[41] except that both (3) and (4) must now be taken into
account. This ensures that a loop nest is tiled not only to
incur the least inter-tile communication but also to exhibit
balanced intra-tile wavefronts for pipelined execution. By
setting k = 1 in (4), we will generate a set of loops to
execute a statement in a tile so that the outermost one iterates
over its wavefronts and the remaining loops over its different
instances. In GPUs, each thread block is organized as a three
dimensional array of threads. In our current implementation,
only the innermost three loops in a loop nest are tiled.

C. Improving Inter-Tile Parallelism

By comparing Figure 4 obtained with ΦS = [ 1 0
1 1 ] [ ti ]+[ 00 ]

and Figure 6 obtained with Φintra
S = [ 2 1

1 1 ] [ ti ] + [ 00 ], we find
that the anti dependence (0,1) affects the shapes of tiles used.
In particular, the first hyperplane has changed from (1,0)
to (2,1) in order to achieve balanced intra-tile wavefronts
when k = 1 (Theorem 2). Unfortunately, the price paid is
that the tiles become more slanted, reducing the degree of
inter-tile parallelism exposed, which can be easily observed
by comparing the inter-tile wavefronts in both cases.

In this section, we describe how to eliminate some false
(anti and output) dependences in a loop nest by introducing
array copy operations. Once they are eliminated in a loop
nest, the transformed loop nest can be parallelized with tiles
of more “regular” shapes, resulting in improved inter-tile
parallelism and reduced bank conflicts. At the same time,
balanced intra-tile wavefronts can still be retained.

Definition 2. Consider a loop nest with G = (V,E) as its
DDG. A false dependence e ∈ E is said to be a parallelism-
hindering false dependence if some constraints generated for

S0:

S1:

A0[i] = A[i]

A[i] = 0.5*( A[i] + A0[i+1] )

(0, 0)(1, 0)

(1, 0)

(1, 0)

(0,−1)

(1, 1)

(1, 0)

(1, 0)

flow
anti
output

Figure 8: DDG for the loop nest given in Figure 7 with each
dependence labelled by its distance vector.
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Figure 9: Iteration space tiling of the loop nest in Figure 7
using ΦS0 = [ 1 0

1 1 ] [ ti ] + [ 00 ] and ΦS1 = [ 1 0
1 1 ] [ ti ] + [ 01 ]. The

tile size used is 2×2. The eight dependences depicted inside
the larger tile on the right are from Figure 8.

e according to (3) and (4) are not redundant with respect
to the set of constraints generated for the dependences in
E \ {e} generated according to (3) and (4).

Consider our example with its five dependences listed in



A0 [ I +1]=A[ I + 1 ] ;
/∗ I n t e r− t i l e l o o p s ∗ /
f o r ( t t =0 ; t t <=f l o o r (2∗T+I , 2 5 6 ) ; t t ++){ / / DOSEQ

f o r ( i i =max ( c e i l ( t t , 2 ) , c e i l (256∗ t t−T , 2 5 6 ) ) + b l o c k I d x . x ;
i i <=min ( f l o o r ( T+I , 2 5 6 ) , f l o o r (256∗ t t + I +255 ,512) , t t ) ; i i += gridDim . x ) { / / DOALL

/∗ I n t r a− t i l e l o o p s ∗ /
/∗ Code f o r c o a l e s c e d l o a d s from s h a r e d memory ∗ /
f o r ( t ’=max (1 ,256∗ t t −256∗ i i , 256∗ i i−I ) ; t ’<=min ( T,256∗ i i +254 ,256∗ t t −256∗ i i +255) ; t ’ ++){ / / DOSEQ

f o r ( i ’=max (256∗ i i +1 , t ’ +2)+ t h r e a d I d x . x ; i ’<=min (256∗ i i +256 , t ’+ I ) ; i ’+=blockDim . x ) / / DOALL
S0 : A0[− t ’+ i ’ ]=A[− t ’+ i ’ ] ;

s y n c t h r e a d s ( ) ;
f o r ( i ’=max (256∗ i i +1 , t ’ +2)+ t h r e a d I d x . x ; i ’<=min (256∗ i i +256 , t ’+ I +1) ; i ’+=blockDim . x ) / / DOALL

S1 : A[− t ’+ i ’ −1]=0.5∗(A[− t ’+ i ’−1]+A0[− t ’+ i ’ ] ) ;
s y n c t h r e a d s ( ) ;

}
/∗ Code f o r c o a l e s c e d s t o r e s i n t o s h a r e d memory ∗ /

}
/∗ Code f o r s y n c h r o n i z i n g b l o c k s ∗ /

}

Figure 10: CUDA kernel generated for the code in Figure 7 using the tiling hyperplanes in Figure 9.

Table I and illustrated in Figures 4 and 6. There are three
false dependences. The output dependence (1, 0) and the
anti dependence (1, 0) are redundant due to the existence of
the flow dependence (1, 0). However, the anti dependence
(0, 1) is a parallelism-hindering false dependence. This
false dependence should be eliminated to improve the load
balance during the parallel execution of inter-tile wavefronts.

Following [43], we eliminate the anti dependence (0, 1)
by introducing a temporal array A0 to perform some array
copy operations. The resulting code is given in Figure 7. To
ensure that the anti dependence is not violated, some values
of A[i] are copied into A0[i] so that they can be read later
when needed. In the transformed code, there are a total of
eight dependences as depicted in Figure 8.

There are now two statements, S0 and S1. To find tiling
hyperplanes ΦS0 and ΦS1 with balanced intra-tile wave-
fronts for both statements, we solve (3) and (4) for all the
eight dependences in the transformed loop nest to obtain:
ΦS0 = [ 1 0

1 1 ] [ ti ]+[ 00 ] and ΦS1 = [ 1 0
1 1 ] [ ti ]+[ 01 ]. As a result,

the transformed loop nest is tiled as shown in Figure 9. By
comparing with Figure 6, we find that the tiles are now
more regularly shaped, yielding better inter-tile parallelism.
In addition, the intra-tile wavefronts are also balanced.

Furthermore, making tile shapes regular also tends to
reduce bank conflicts incurred during the execution of a tile.
For loop nests with uniform dependences, the number of
such bank conflicts can be easily estimated. This fact can
be exploited in tile size selection to tune for better tiling
hyperplanes (Section IV). Consider our example again. In
Figures 4 and 6, where the anti dependence (0, 1) is still
present, the wavefronts in a tile are pipelined along (2, 1).
As a result, each wavefront can be identified by a line
i = −2t+c for some c. As the values of i are discontinuous
with a gap of 2, stride-2 memory accesses are made. When
one warp executes a wavefront, two-way bank conflicts will

Algorithm 2: Eliminating parallelism-hindering false
dependences by introducing array copy operations

Input: A loop nest L with uniform dependences
Output: Transformed loop nest L′ with the same I/O

behavior as L
1 Identify parallelism-hindering false dependences in L;
2 Transform L into L′ by eliminating these false

dependences using array copy operations [43];

occur. In Figure 9, where the anti dependence (0, 1) has been
removed, the memory accesses in each wavefront are now
stride-1. As a result, no bank conflicts can occur.

The CUDA code generated using the tiling hyperplanes
illustrated in Figure 9 is given in Figure 10. There are two
statements S0 and S1. The wavefronts for each statement
in each tile are pipelined for parallel execution. Both are
synchronized to satisfy their inter-statement dependences.

As shown in Algorithm 2, once parallelism-hindering false
dependences in a loop nest are identified, we can apply
the techniques described in [43] to eliminate them. This
allows the transformed loop nest to be parallelized using
tiling hyperplanes with better inter-tile parallelism.

IV. THE COMPILER FRAMEWORK

We have implemented our compiler techniques using a
combination of the Clan polyhedral representation extrac-
tor, PLUTO’s polyhedral parallel tiling infrastructure and
the CLooG code generator, as shown in Figure 11. Our
framework automatically translates sequential C loop nests
into CUDA kernels. Our techniques are used in the modules
highlighted by the dotted rectangular boxes.

We identify parallelism-hindering false dependences in
a loop nest using Clan’s dependence analysis. We then
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Clan: dependence analysisIdentify parallelism-
hindering false dependences

Add array copy operations
and generate transformed code

Clan: dependence analysis

PLUTO: loop transformationsGenerate tiling hyperplanes with
balanced intra-tile wavefronts

Model-driven tile size selection

CLooG: code generation
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Figure 11: The C-to-CUDA compiler framework.

generate the transformed loop nest without these false de-
pendences by using the techniques described in [43]. When
searching for tiling hyperplanes with balanced intra-tile
wavefronts and performing subsequent loop transformations,
we make use of PLUTO’s polyhedral implementation.

We previously developed a cost model regarding tile size
selection for GPUs [9]. This model estimates the execution
times of a loop nest with different tile sizes and thread
organizations. When intra-tile wavefronts are balanced, the
predictions made by our model can be more precise.

Finally, we use CLooG with the extension described in [4]
to generate CUDA code from the tiling hyperplanes selected.

V. EXPERIMENTAL RESULTS

We have selected eight benchmarks on stencil computa-
tions, as listed in Table II. These include 1-D, 2-D and 3-D
Jacobi solvers from the Rodinia benchmark suite and the
Circular Queue toolkit, 2-D FDTD as well as 1-D and 2-D
SOR solvers from Polybench, and the 2-D Heat solver from
the Chombo toolkit. For the two 3-D Jacobi solvers, only
their innermost three loops are tiled and parallelized. Our
evaluation with small benchmarks is preliminary. In future
work, more extensive benchmarking will be conducted.

We have carried out our experiments on two NVIDIA
GPUs, C1060 and C2050. For each benchmark, the problem
size used is given in Table II. For all the benchmarks, we
have succeeded in finding tiling hyperplanes with balanced
intra-tile wavefronts. For all except the two SOR solvers,
some parallelism-hindering false dependences have been
eliminated to expose more inter-tile parallelism.

We evaluate our framework by comparing with PLUTO
[4], an existing C-to-CUDA translator, and some hand-
optimized CUDA code. We compare our framework and
PLUTO across all the eight benchmarks to highlight the

performance advantages of the two new optimizations intro-
duced for GPUs in this paper. We compare the CUDA code
generated for the four Jacobi solvers with their highly hand-
tuned CUDA kernels to demonstrate further the strengths
and limitations of our compiler optimizaitons.

1) Compared with PLUTO: Both our framework and
PLUTO generate tiling hyperplanes for loop nests automati-
cally. In both cases, the best tile sizes for tiling hyperplanes
are determined empirically by using a cost model from [9].

Figure 12 shows the speedups achieved by our framework
over PLUTO. There are two configurations tested in our
framework, depending on how the two optimizations listed
in Table II are used. “Intra” means that the optimization
for achieving balanced intra-wavefronts is turned on. “In-
tra+Inter” means that in addition to the “intra” optimiza-
tion, the “inter” optimization for eliminating parallelism-
hindering false dependences to achieve better inter-tile par-
allelism is also turned on. There are no such false depen-
dences to eliminate in the two SOR solvers. Therefore, the
speedups in the two configurations in either benchmark are
identical. The “Inter” optimization, if used alone, is not very
beneficial. Figure 13 shows the speedups on C2050.

Our experimental results demonstrate the performance
advantages of the “intra” and “inter” optimizations. When
the “intra” optimization alone is used, the speedups range
from 2.05X – 5.41X with an average of 3.32X on C1060 and
from 2.07X – 5.43X with an average of 3.27X on C2050. As
the intra-tile wavefronts are balanced, the degree of intra-SM
parallelism achieved in our framework is higher.

When the “inter” optimization is also turned on, there are
performance improvements across all the six benchmarks
(with some parallelism-hindering false dependences to re-
move) on both C1060 and C2050. The speedups range from
3.10X – 5.52X with an average of 3.98X on C1060 and
from 3.20X – 5.48X with an average of 4.07X on C2050. By
eliminating some false dependences, tiles with more regular
shapes can be used. This optimization has two benefits. First,
better inter-tile parallelism is achieved. Second, the number
of bank conflicts incurred during the execution of a tile
is reduced. On the other hand, this optimization also has
its associated costs. False dependences are eliminated by
introducing new temporary arrays and new copy operations
on these arrays. Such code rewriting can increase the number
of instructions executed and inter-statement synchronization
operations used. Overall, the benefits outweigh the costs.

2) Compared with Hand-tuned Code: We compare the
CUDA code generated by our framework for the four Jacobi
benchmarks with the CUDA code manually obtained using
the Circular Queue approach [8]. Circular Queue improves
data locality by streaming tiled data. It strives to exploit the
maximum amount of parallelism among the computations
executed during every iteration of the outermost (time) loop
but ignores the data reuse across its different iterations.
Unlike Circular Queue, our approach trades off parallelism



Benchmark
Max

Innermost Perfectly
Our Approach Input

Loop
DOACROSS Loop? Nested?

False Dependence Balanced Intra-Tile Problem
Depth Elimination Wavefronts Size

1-D Jacobi-3 (3 points) 2 X X 65536*65536
2-D Jacobi-5 (5 points) 3 X X 1000*4096*4096
3-D Jacobi-7 (7 points) 4 X X 256*256*256*256

3-D Jacobi-27 (27 points) 4 X X 256*256*256*256
1-D SOR-3 (3 points) 2 X X X 65536*65536
2-D SOR-5 (5 points) 3 X X X 1000*4096*4096

2-D FDTD 3 X X 1000*4096*4096
2-D Heat (7 points) 3 X X 1000*4096*4096

Table II: Benchmarks and their characteristics.
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Figure 12: Speedups of our framework (with the two opti-
mization configurations) over PLUTO on C1060.
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Figure 13: Speedups of our framework (with the two opti-
mization configurations) over PLUTO on C2050.

for data reuse due to pipelined execution of wavefronts.
As shown in Figure 14, our approach is competitive. For

1-D Jacobi (3 points), 2-D Jacobi (5 points), 3-D Jacobi
(7 points) and 3-D Jacobi (27 points), our speedups are
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Figure 14: Speedups over Circular Queue for Jacobi.

1.17X, 1.41X, 0.97X and 0.87X with an average of 1.10X
on C1060 and 1.24X, 1.20X, 0.86X and 0.95X with an
average of 1.06X on C2050. For the 1-D and 2-D solvers,
we achieve better performance due to better data reuse
exploited. For the two 3-D solvers, only the innermost three
loops are parallelized. Our CUDA kernels are similar to the
ones generated by Circular Queue. Circular Queue delivers
better performance due to some hand optimizations. For
example, simpler loop bounds are used, resulting in fewer
instructions to be executed. The amount of data transferred
between device memory and shared memory is meticulously
calculated. Finally, memory accesses are better coalesced.

VI. RELATED WORK

A. Performance Analysis and Compilation for GPUs

Due to complexities involved in optimizing GPU applica-
tions, several studies have been conducted to establish opti-
mization principles and strategies that allow efficient map-
ping of sequential programs to GPUs [3], [15], [34]. There
are two major issues affecting the productivity bottlenecks
in GPU programming: utilization of memory hierarchy and
management of parallelism. To address these two issues, G-



ADAPT [23] was introduced as an input-adaptive optimiza-
tion framework for GPUs to predict optimal configurations.
Yang et al. [44] designed an optimizing compiler to alleviate
these bottlenecks. In addition, OpenMPC [18], [19] and
OMPSs [12] provide an abstraction for the complex CUDA
programming model and offer high-level controls over the
involved parameters and optimizations.

Manual development of efficient CUDA code for different
loop nests can be time-consuming and error-prone. In order
to reduce programming effort, PLUTO [4] was released
as a source-to-source compiler for translating sequential
C programs into CUDA programs. CETUS [19] and PGI
[39] support high-level programming paradigms for GPUs,
which are similar to the widely-used OpenMP programming
model. Par4All [28] combines C-to-OpenMP and OpenMP-
to-CUDA to generate CUDA programs. While performing
some code optimizations, these tools do not specifically
optimize loop nests with loop-carried dependences, as we
do.

B. Stencil Computations on GPUs

There are a number of prior efforts on implementing
stencil kernels on GPUs [8], [16], [22], [25], [32], [37]. In
the case of Jacobi-like stencil computations with DOALL
inner loops, Circular Queue [8] streams tiled data to hide
I/O latency and exploit data locality in the GPU memory
hierarchy. However, it does not exploit the data reuse among
multiple sweeps across a computational domain [42]. Our
approach does this and achieves better performance than
Circular Queue for 1-D and 2-D Jacobi solvers.

In [22], [37], efficient “asynchronous” solutions for Jacobi
are introduced by not respecting some loop-carried depen-
dences. The basic idea is to algorithmically restructure a
stencil kernel based on a non-dependence-preserving paral-
lelization scheme to avoid pipelining for higher parallelism.
In contrast, our approach exploits better fine-grained paral-
lelism without violating data dependences and is applicable
to all loop nests with uniform dependences.

C. Multi-level Tiling in the Polyhedral Model

Multi-level tiling has been developed to improve data
locality across different levels of a memory hierarchy [14],
[33], [35]. This work aims to achieve two levels of fine-
grained parallelism for GPUs: intra-SM and inter-SM. We
improve intra-SM parallelism by generating balanced intra-
tile wavefronts. We improve inter-SM parallelism by elimi-
nating parallelism-hindering false dependences.

When tiling a loop nest, there are infinitely many choices.
To enable appropriate tiling hyperplanes to be selected, some
work focuses on pruning the search space and optimizing
hyperplane generation strategies [29], [30], [45], [42]. Lim
and Lam’s algorithm obtains affine partitions that minimize
the order of communication while maximizing the degree of
parallelism [21]. Griebl’s approach enables tiling of the time

dimension with a forward communication-only placement
[13]. Bondhugula [6] developed a communication-minimized
parallelization framework in which a cost function is used
to quantify communication volumes and reuse distances.

D. Dependence Elimination

A common problem faced in restructuring programs is
how to suppress anti and output dependences in order to
improve locality [43] or parallelism [20], [24]. This is usu-
ally done by array expansion or introducing new temporary
arrays and associated copy operations [7], [11], [35], [43].

Unlike these previous efforts, which are restricted to
CPUs, this work eliminates anti and output dependences to
improve fine-grained (intra- and inter-SM) parallelism on
GPUs. Such false dependences are eliminated in order to
improve inter-tile parallelism and reduce bank conflicts.

VII. CONCLUSION

We have presented a compiler framework that enables
automatic parallelization of loop nests into CUDA code with
enhanced fine-grained parallelism for GPUs. Our frame-
work comprises two key optimizations, one to find tiling
hyperplanes with balanced intra-tile wavefronts and one
to eliminate some false dependences with improved inter-
tile parallelism. Our preliminary experimental validation
demonstrates the effectiveness of our framework.
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