
SPAS: Scalable Path-Sensitive Pointer Analysis

on Full-Sparse SSA

Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

1 School of Computer Science and Engineering, UNSW, Australia
2 Department of Computer Science and Engineering, University of Minnesota, USA

Abstract. We present a new SPAS (ScalablePAth-Sensitive)framework
for resolving points-to sets in C programs that exploits recent advances in
pointer analysis. SPAS enables intraprocedural path-sensitivity to be ob-
tained in flow-sensitive and context-sensitive (FSCS) techniques scalably,
by using BDDs to manipulate program paths and by performing pointer
analysis level-by-level on a full-sparse SSA representation similarly as
the state-of-the-art LevPA (the FSCS version of SPAS). Compared with
LevPA using all 27 C benchmarks in SPEC CPU2000 and CPU2006,
SPAS incurs 18.42% increase in analysis time and 10.97% increase in
memory usage on average, while guaranteeing that all points-to sets are
obtained with non-decreasing precision.

1 Introduction

There have been great advances in pointer analysis performed flow-sensitively [9,
10, 14], context-sensitively [19, 16, 17] or with both combined [23, 11]. As reported
recently [10, 11, 23], insensitive analysis can be leveraged to bootstrap sensitive
analysis, thereby leading to significant improvements in scalability and precision.
In particular, it is shown by LevPA [23] that flow-sensitive and context-sensitive
(FSCS) analysis becomes substantially more scalable when performed on full-
sparse SSA, level by level (in order of their decreasing points-to levels), with
each level being analyzed with an inclusion-based flow-insensitive algorithm.
However, little progress [20, 15] has been made when path-sensitivity is also
considered. Exploiting recent advances in FSCS pointer analysis, we describe a
SPAS (Scalable PAth-Sensitive) framework that enables intraprocedural path-
sensitivity to be obtained scalably for C programs on top of the state-of-the-art
LevPA (the FSCS version of SPAS). SPAS obtains all points-to sets with non-
decreasing precision by adding small analysis overhead in both time and space,
as validated using SPEC CPU2000 and SPEC2006.

Equipped with path-sensitivity, a FSCS pointer analysis is equally as or more
precise, as illustrated in Figure 1. With such path-sensitive precision, the quality
of many software tools and techniques in program optimization, analysis and
verification can be significantly improved. Examples include bug hunting [13],
memory leak analysis [20] and software vulnerability detection [15, 21].

A major hindrance to path-sensitive pointer analysis is the lack of scalability.
We tackle it by tracking program paths using Binary Decision Diagrams (BDDs)
and by infusing path-sensitivity into FSCS pointer analysis seamlessly on full-
sparse SSA. Our generalization is simple, drops easily on a full-sparse FSCS

2 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

int *q, v, w, z;

void main() {
int **a, *f = &z;
a = &f; q = &v;
foo(a);

}
void foo(int **x) {

int *g = &z;
if (∗) {

x = &g; q = &w;
}
*x = q;

}
(a) Original code

B1

B2 (if)

B3

Path P1 : B1 → B2 → B3

Path ¬P1 : B1 → B3

(b) CFG of foo

f

z

v

g w

¬P1

P1

P1

¬P1

(c) Points-to rela-
tions in foo with

path-sensitivity (each
points-to relation is
labeled with the path
along which it holds)

f

z

v

g w

(d) Points-to relations
in foo without path-
sensitivity (the two
depicted in dashed

arrows are spurious)

Fig. 1. Effects of path-sensitivity on indirect updates at a store ∗x=q in FSCS analysis.

pointer analyzer like LevPA [23], and retains the scalability of the underlying
FSCS analysis (by adding small overhead in analysis time and memory usage).

Presently, SPAS captures path correlation only without ruling out infeasible
paths. In summary, this paper makes the following contributions:

– SPAS is the first full-sparse path-sensitive FSCS pointer analysis;
– SPAS is the first to encode program paths using BDDS on full-sparse SSA;
– SPAS obtains (intraprocedural) path-sensitivity efficiently on full-sparse SSA,

level by level, with each level being analyzed flow-insensitively; and
– SPAS has compatible performance as the state-of-art FSCS analyzer LevPA

(the FSCS-version of SPAS). With both implemented in Open64, SPAS adds
small average overhead (18.42% more in time and 10.97% more in space) for
all the 27 C programs in SPEC CPU2000 and CPU2006, while ensuring that
all points-to sets are obtained with non-decreasing precision. To the best of
our knowledge, SPAS is the fastest path-sensitive FSCS pointer analysis for
C reported in the literature.

2 Related Work

There is not much reported on performing whole-program pointer analysis flow-,
context- and path-sensitively. We review some solutions using sparse SSA and
BDDs and some limited amount of prior work on path-sensitive pointer analysis.

Sparsity Unlike iterative dataflow-based pointer analysis [12, 3, 7], SSA-based
pointer analysis [9, 10, 23] is sparse and thus more scalable, as SSA allows points-
to information to flow directly from variable definitions to their uses only.

In [9], Hardekopf and Lin presented a semi-sparse flow-sensitive analysis. By
putting top-level pointers in SSA, their def-use information can be exposed di-
rectly. Lately [10], they generalized their work by making it full-sparse. This is
done by using a flow-insensitive inclusion-based pointer analysis to compute the
required def-use information in order to build SSA for all variables. However,
their algorithms are not context-sensitive. Yu et al. [23] introduced LevPA for
performing FSCS pointer analysis on full-sparse SSA. In LevPA, points-to reso-
lution and SSA construction are performed together, level by level, in decreasing
order of their points-to levels. Our SPAS framework is a scalable generalization
of FSCS pointer analyzers like LevPA to obtain intraprocedural path-sensitivity.

SPAS: Scalable Path Sensitive Pointer Analysis 3

BDDs Berndl et al. [1] proposed to use BDDs to encode points-to relations
and also studied the impact of BDD variable ordering on analysis performance.
Later, BDDs were also used to encode transfer functions [24] and contexts [19,
23] in context-sensitive analysis. In [21], Xie and Aiken discussed to use BDDs to
represent program paths and simplify paths heuristically in SATURN, a SAT-
based bug detection tool. In our SPAS pointer analyzer, BDDs are used to encode
paths (and contexts) on full-sparse SSA using a standard BDD library. This
enables the pointers to be resolved using a guarded inclusion-based insensitive
analysis on full-sparse SSA, where the guards are contexts and program paths.

Path-Sensitivity We are unaware of any prior FSCS pointer analyzer support-
ing path-sensitivity on sparse SSA. In some bug-hunting tools like Prefix [2],
path-sensitivity was exploited to look for bugs in some selected paths. A recent
sound and complete generalization for SATURN [6] can compute various pro-
gram properties using a SAT solver with even interprocedural path-sensitivity.
However, it is not suited for whole-program points-to resolution.

SPAS and bug analysis aim to achieve different goals. Some bug detection
tools rule out some infeasible paths based on branch conditions to reduce false
positives but SPAS presently does not. However, SPAS can already provide more
precise points-to information to make these tools more effective. Finally, Gutz-
mann et al. [8] discussed how to filter out spurious points-to relations flowing
out of a branch node but their approach neither captures path correlation as
SPAS does nor rules out infeasible paths.

3 The Basic Idea

SPAS analyzes all features of C by considering four types of assignments:
x = y (copy), x = &y (address), ∗x = y (store) and x = ∗y (load). SPAS is field-
insensitive for arrays (by not distinguishing array elements) but field-sensitive
for structs (by flattening and replacing them with separate variables, one for
each field). SPAS names abstraction heap objects by their allocation sites.

The following sets and functions are used in some definitions given below.

– O: set of abstract memory locations representing the variables in a program.
– L : O → {0, . . . , L}: a level map giving each variable a points-to level. If q

may be modified by operations on p (possibly indirectly), then L(p) ≥ L(q).
– C: set of contexts represented as Boolean expressions over the set O×O of

points-to relations. The notation p → o means that p may point to o.
– D: set of paths represented as Boolean conditions over the set of decision

variables (encoding the branches in a CFG to be introduced in Section 5.1).
– C : C × D: set of combined context and path conditions used to specify under

which condition in C a pointer may point to a memory object in O.

Definition 1 (Formal-Ins). Given a method m, Fm
in ⊆ O denotes the set of its

formal-ins, i.e., its formal parameters and non-local variables accessed in m.

Definition 2 (Formal-Outs). Given a method m, Fm
out ⊆ O denotes the set of

its formal-outs, i.e., its return parameter (a special local variable of m containing
its return value) and non-local variables that may be modified in m.

4 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

In flow-sensitive analysis, we speak of the points-to sets of a pointer p at
program points, which are identified by the versions of p at those points in SSA.

Definition 3 (Points-to Sets). The points-to set of a pointer p at a program
point, PtrSet(p) ⊆ O, is a set of locations in O possibly pointed to by p.

SPAS achieves context-sensitivity by traversing the call graph of a program
bidirectionally. During a bottom-up traversal, the points-to sets of a pointer p
at a point may be related to those of some formal-ins in terms of points-to maps
(Definition 4). During a top-down traversal, p is resolved once the points-to sets
of all its dependent formal-ins have been found (Definition 3).

Definition 4 (Points-to Maps). The points-to map of a pointer p at a pro-
gram point in a method m is given by:

PtrMap(p) = (Loc(p),Dep(p)) (1)

where Loc(p) ⊆ O × C contains each tuple (v, Cv, Pv) such that p may point to
v in context Cv along path Pv within method m and Dep(p) ⊆ F

m
in × C contains

each tuple (f, Cf , Pf) such that p may point to what formal-in f points to in
context Cf along path Pf within method m.

SPAS is intraprocedurally path-sensitive. Thus, the transfer functions (MOD
and USE) of a formal-out in a method m are predicated by m’s calling contexts
(without m’s path conditions). Similarly, the path conditions in their specified
side effects are also ignored (and hence, the ∗’s). To support strong updates, we
distinguish MAY-DEFs and MUST-DEFs at stores.

Definition 5 (MOD). The transfer function MOD of a formal-out fout ∈ F
m
out

in a method m describes its interprocedural modification side effect:

MOD(m, fout) = (Loc(fout),Dep(fout), C
may
fout

, Cmust
fout

) (2)

indicating that fout may be modified, i.e., MAY-DEF’ed in context C
may
fout

∈ C

to point to either (a) v for each (v, Cv, ∗) ∈ Loc(fout) when Cv holds or (b)
whatever f points to for each (f, Cf , ∗) ∈ Dep(fout) when Cf holds. If Cmust

fout
∈ C

also holds, then the MAY-DEF is actually a MUST-DEF.

Definition 6 (USE). The transfer function USE of a formal-in fin ∈ F
m
in in a

method m describes its MAY-USE, i.e., interprocedural read side effect:

USE(m, fin) = (PtrSet(fin), Cfin) (3)

indicating that what is pointed to by fin may be read in context Cfin ∈ C. (If m
is a formal parameter, it does not need a USE function as m is local.)

The basic idea behind SPAS is simple. The pointers are resolved in order of
their decreasing points-to levels by maintaining the invariant stated below.

Property 1 (Level-Wise Invariant). Just before level ℓ is analyzed, (a) all
(direct and indirect) accesses to the pointers at higher levels are in SSA, with
the indirect accesses via pointer dereferencing and calls being expressed using
µ (MAY-USE) and χ (MAY/MUST-DEF) operations [4], (b) all pointers at
higher levels have been soundly resolved, and (c) all indirect accesses made by
dereferencing the pointers at level ℓ are exposed using µ and χ operations.

SPAS: Scalable Path Sensitive Pointer Analysis 5

The analysis performed at level ℓ is to ensure that this invariant holds at
the beginning of ℓ − 1. This is done by traversing the call graph of a program
first bottom-up and then top-down iteratively. During bottom-up analysis, SPAS
analyzes each method m by (B1) building its SSA (doable as Property 1(c) holds
for ℓ) and (B2) computing the points-to maps for its pointers at ℓ (Definition 4).
Prior to (B1), SPAS inserts µ and χ operations for each of its call sites, c, to
expose the MAY-USEs and MAY/MUST-DEFs made by c’s callees to every
pointer at ℓ. This is done by applying the callees’ transfer functions at call site
c. After (B2) is done, the transfer functions of method m are computed. During
top-down analysis, SPAS (T1) resolves the points-to sets of the pointers at ℓ by
propagating the dependent points-to sets to formal-ins (Definition 3) and (T2)
annotates the dereferences to these pointers with µ and χ operations.

4 A Motivating Example

We describe how SPAS improves FSCS pointer analysis by refining Figure 1(d)
into Figure 1(c). This program may look complex but it appears to be one of
the smallest examples that we can come up with in order to illustrate all key
aspects of SPAS. The variables are partitioned into three levels: {a, x} at level
2, {q, f, g} at level 1 and {v, w, z} at level 0. We examine the top two levels only.

Level 2 The pointers a and x are considered. The input is Figure 1(a), for which
Property 1 holds trivially at this level. The output is given in Figure 2(a).

– Bottom-Up When foo is analyzed, all accesses to x are first put in SSA.
During points-to resolution, the points-to maps for its three definitions are
found. In particular, x0 is recorded to point to what formal-in x points to.
By analyzing the φ node for x path-sensitively, x2 is found to point to g in
context true (i.e., any context) along path P1 and what x points to in context
true along ¬P1. When main is analyzed, the points-to map of a0 is found.

– Top-Down In main, a0 has been resolved locally. Binding a0 with formal-in
x at the call site to foo reveals that PtrSet(x0) = {f}. When foo is processed,
the MAY-DEF to f (g) via ∗x2 is exposed by a χ operation, where context
condition x → f (true) indicates that the MAY-DEF occurs when formal
parameter x points to f (in any context). Like LevPA, SPAS uses points-to
relations holding at a call site to represent and distinguish calling contexts.

Level 1 The pointers q, f and g are considered. The input is Figure 2(a), for
which Property 1 holds at this level. The output is given in Figure 2(b).

– Bottom-Up When foo is analyzed, all accesses to the three pointers (in-
cluding the two MAY-DEFs) are first put in SSA. Like x, q0 = q and f0 = f

are inserted for the formal-ins q and f . Here, q is a global and f is an invisible
[12] accessed via pointer dereferening. The points-to resolution for q is done
similarly as x with the points-to maps obtained as shown. We now consider
how store ∗x2 = q2 is analyzed together with its two MAY-DEFs to resolve
f1 and g1. By capturing path correlation, SPAS deduces that f1 points to
whatever formal-in q does along path ¬P1 and whatever formal-in f does

6 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

int *q, v, w, z;
void main() {

int **a, *f = &z;
a0 = &f; q = &v;
foo(a0);

}
void foo(int **x) {

x0 = x; // formal-in x identified as x0 (ver 0)
int *g = &z;
if (∗) {

x1 = &g; q = &w;
}
x2 = φ(x0, x1);
*x2 = q;
f = χ(f, x → f , ¬P1, MAY);
g = χ(g, true, P1, MAY);

}

main:
PtrMap(a0)=({(f, true, true)}, ∅)

foo:
PtrMap(x0)=(∅, {(x, true, true)})
PtrMap(x1)=({(g, true, P1)}, ∅)
PtrMap(x2)=({(g, true, P1)}, {(x, true,¬P1)})
PtrSet(x0)={f}

int *q, v, w, z;
void main() {

q0 = q; // formal-in q identified as q0 (ver 0)
int **a, *f0 = &z;
a0 = &f; q1 = &v;
µ(q1, true, true);

foo(a0);
f1= χ(f0, true, true, MAY);

}
void foo(int **x) {

x0 = x; // formal-in x identified as x0 (ver 0)
q0 = q; // formal-in q identified as q0 (ver 0)
f0 = f; // formal-in f identified as f0 (ver 0)
int *g0 = &z;
if (∗) {

x1 = &g; q1 = &w;
}
x2 = φ(x0, x1);
q2 = φ(q0, q1);
*x2 = q2;
f1 = χ(f0, x → f , ¬P1, MAY);
g1 = χ(g0, true, P1, MAY);

}
main:
PtrMap(f0)=({(z, true, true)}, ∅)
PtrMap(q1)=({(v, true, true)}, ∅)
PtrMap(f1)=({(z, true, true), (v, true, true)}, ∅)

foo:
PtrMap(q0)=(∅, {(q, true, true)})
PtrMap(q1)=({(w, true, P1)}, ∅)
PtrMap(q2)=({(w, true, P1)}, {(q, true,¬P1)})
PtrMap(f0)=(∅, {(f, true, true)})
PtrMap(f1)=(∅, {(q, x → f,¬P1), (f, x → f, P1)})
PtrMap(g0)=({(z, true, true)}, ∅)
PtrMap(g1)=({(z, true,¬P1), (w, true, P1)}, ∅)
PtrSet(f0)={z}
PtrSet(q0)={v}

(a) After level 2 is analyzed (b) After level 1 is analyzed

Fig. 2. Level-wise SSA construction and path-sensitive pointer analysis for Figure 1(a).

along P1 and that g1 points to z along ¬P1 and w along P1. The transfer
functions relevant for computing the side effects of the call to foo are:

MOD(foo, f) = ({Loc(f1),Dep(f1), x → f, false)
USE(foo, q) = (PtrSet(q0), true)

(4)

When main is analyzed, a MAY-DEF for f is added since context Cmay
f =

x → f in MOD(foo, f), once mapped to a → f at the call site, holds.
However, this is not a MUST-DEF since Cmust

f = false. In addition, a MAY-
USE for q is added. Then the SSA form is built. Finally, by performing the
points-to resolution for f and q with the modification side effects of foo on
f being accounted for, we obtain their points-to maps as shown.

– Top-Down When main is analyzed, its pointers at this level are already
resolved. Propagating the points-to sets of q1 and f0 at the call site to foo,
we find PtrSet(f0) = {z} and PtrSet(q0) = {v} in foo. When foo is processed
next, all its pointers at this level can be resolved by Definition 4. As a result,
the points-to relations for f1 and g1 are obtained as shown in Figure 1(c).

SPAS obtains such improved precision with a slight increase in analysis over-
head. There are several reasons for SPAS to achieve this level of scalability:

SPAS: Scalable Path Sensitive Pointer Analysis 7

Program Paths Manipulated as BDDs Like contexts [23], program paths
are also represented and operated on using BDDs in a compact and canonical
fashion, resulting in fast operations on program paths.

Full-Sparse SSA (at All Points-to Levels) As in LevPA [23], pointers are
resolved, level by level, in order of their decreasing points-to levels. At the
same time, the full-sparse SSA form is being built incrementally. The points-
to relations of a pointer at a particular level cannot be propagated to lower-
level pointers unless it has fully been resolved. Thus, the number of repropa-
gations is reduced, leading to faster convergence for the points-to resolution.

Flow-Insensitive Points-to Resolution SSA is ideal for enabling sparse anal-
ysis because it makes def-use information explicit. Like contexts [23], pro-
gram paths are also used to guard what points-to information can be propa-
gated across an pointer assignment. Thus, our path-sensitive pointer analysis
is sped up with a guarded inclusion-based flow-insensitive pointer analysis.

5 The SPAS Framework

SPAS is a summary-based FSCS pointer analyzer with intraprocedural path-
sensitivity being supported. In particular, SPAS builds MOD and USE functions
for each method and applies them to all its calling contexts.

Section 5.1 discusses how to encode program paths using BDDs. Section 5.2
examines the χ and µ operators added to the classic SSA form. To ease under-
standing, we introduce SPAS in two stages. In Section 5.3, we focus on capturing
path correlation without performing strong updates. In Section 5.4, we discuss
briefly but precisely how to extend it to perform path-sensitive strong updates.

5.1 Encoding Program Paths as BDDs

SPAS does not presently distinguish the paths inside a loop-induced cycle but
can analyze the first few iterations of a loop path-sensitively via loop peeling.

All branch nodes are assumed to be binary. We use decision variables to
encode branch nodes to express program paths. The edges and blocks in a CFG
(with cycles collapsed) are associated with paths as follows. The path for the
incoming edge of the entry block is initialized to true (representing the set of all
paths). Let B be a block with n incoming edges associated with paths P1, . . . , Pn.
The path for B is P1 ∨ · · · ∨ Pn. If B is a branch node encoded with decision
variable Q, the paths for its two outgoing edges are (P1∨· · ·∨Pn)∧Q and (P1∨
· · ·∨Pn)∧¬Q, respectively. Otherwise, its unique outgoing edge is P1∨ · · ·∨Pn.

Our BDD encoding has three advantages. First, the number of BDD variables
used is kept to a minimum. Second, it plays up the strengths of BDDs by exposing
opportunities for path redundancy elimination. Third, the paths combined at a
join node are effectively simplified (e.g., with P1 ∨¬P1 being reduced into true),
resulting in fast propagation of path conditions during points-to resolution.

5.2 Extended SSA Form

The classic SSA representation [5] is mainly useful for scalars without aliases.
Following [23], we extend the classic SSA form by using the µ and χ operators [4]
to make explicit all potential uses and definitions at loads/stores and call sites, as

8 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

shown in Figure 2. A load or call site is annotated with a µ(v, Cv, Pv) operation
to indicate a MAY-USE of v in context Cv along path Pv. A store or call site
is annotated with a v = χ(v, Cv, Pv,Mv) operation to indicate a MAY-DEF
(MUST-DEF) of v in context Cv along path Pv if Mv is MAY (MUST).

5.3 Capturing Path Correlation

This section focuses on capturing path correlation without strong updates. We
consider functions with return statements in Section 5.4. As we do not distinguish
MAY-DEFs and MUST-DEFs for now, the last entry Cmust

out in a MOD function
(Definition 5) is ignored and the last entry in a χ operation is always a MAY.
For Figure 2, all points-to maps are unchanged except for f1 and g1 in foo:

PtrMap(f1) = (∅, {(q, x → f,¬P1), (f, x → f, true)})
PtrMap(g1) = ({(z, true, true), (w, true, P1)}, ∅)

(5)

Without path-sensitive strong updates, the old points-to sets (i.e., PtrMap(f0)
for f1 and PtrMap(g0) for g1 in Figure 2(b)) must be preserved along path “true”
as above and cannot be killed path-sensitively as in Figure 2(b).

To account for the read and modification side effects at a call site, the binding
between the actual and formal parameters is performed in the standard manner.

Definition 7 (Mappings of Formal-Ins and Formal-Outs). For a formal-
in fin ∈ F

n
in of method n invoked at call site c, Callee2Callerin(c, n, fin) denotes

the corresponding actual parameter of fin at c if fin is a formal parameter of n
and fin itself otherwise (i.e., if fin is a nonlocal). For a formal-out fout ∈ F

m
out

of n invoked at c, Callee2Callerout(c, n, fout) denotes the variable at c that is
assigned from fout if fout is a return parameter of n and fout itself otherwise.

In Figure 2, Callee2Callerin(c, foo, x) = a, Callee2Callerin(c, foo, q) = q, and
Callee2Callerin(c,foo,f)=Callee2Callerout(c,foo,f)=f , where c is the call to foo.

Conceptually, SPAS proceeds in the following two sequential stages:

Stage 1. L = Partition(O) We compute L by using some fast flow-insensitive
pointer analysis for the pointers in O. For example, we can apply Steensgaard’s
algorithm [18] to obtain a points-to graph, merge all predecessors of each node,
and finally, make the points-to graph acyclic by collapsing SCCs, as in [23]. The
points-to level of a variable is its longest length over {0, . . . , L} to a sink node.

Stage 2. ∆−1 = Analyze(L, ∆L,G) We build SSA and resolve pointers, level
by level, from L to 0. ∆L is the initial SSA that satisfies vacuously Property 1 for
L and G is the initial call graph constructed when function pointers are not yet
resolved. Analyze is restarted whenever new points-to relations are discovered
for a function pointer. G is always a directed acyclic graph. In the presence of
recursive calls, G is made acyclic by collapsing all SCCs. The analysis within
each SCC is performed iteratively until a fixed-point is reached to obtain full
context sensitivity for all the methods in the SCC. Once Analyze has run to
completion, ∆−1 is the full-sparse SSA obtained that satisfies Property 1 for
level −1 (excluding its Part(c)) and all pointers have been fully resolved.

When analyzing level ℓ, Analyze starts with ∆ℓ, i.e., the SSA form that
satisfies Property 1 for ℓ and ends with producing ∆ℓ−1, i.e., the SSA form that

SPAS: Scalable Path Sensitive Pointer Analysis 9

1BottomUp (Method: m, Level ℓ)
2 Step 1 : Add µ χ Callsites(m, ℓ)
3 Step 2 : Build SSA(m, ℓ)
4 Step 3 : Pointer Inference(m, ℓ)
5 Step 4 : Comp MOD USE Funs (m, ℓ)

6 1 Add µ χ Callsites(Method: m, Level: ℓ)
7 for each call site c in method m

8 Let Pc be the path allocated to call site c

9 for each callee n invoked at call site c

10 for each formal-out fout ∈ F
n
out of n,

L(fout) = ℓ, that is not a return parameter
11 Let MOD(n, fout) = (∗, ∗, Cmay

fout
)

12 if (Cmay
fout

=Callee2Callerctx(c, n, C
may
fout

))6=false

13 Add fout = χ(fout, C
may
fout

, Pc,MAY) for c

14 for each formal-in fin ∈ F
n
in of n,

L(fin) = ℓ, that is not a formal parameter
15 Let USE(n, fin) = (∗, Cfin)

16 if (Cfin =Callee2Callerctx(c, n, Cfin)) 6= false

17 Add µ(fin, Cfin , ∗) for c

18 2 Build SSA(Method: m, Level: ℓ)
19 Apply the SSA construction algorithm [5]

20 3 Pointer Inference(Method: m, Level: ℓ)
21 Perform a guarded inclusion-based flow-insensitive

pointer analysis using the rules in Table 1

22 4 Comp MOD USE Fun(Method: m, Level: ℓ)
23 See text (Section 5.3)

24TopDown (Method: m, Level ℓ)
25 Step 5 : Resolve PointsToSets(m, ℓ)
26 Step 6 : Add µ χ Derefs(m, ℓ)

27 5 Resolve PointsToSets(Method: m, Level: ℓ)
28 for each call site c in method m

29 for each callee n invoked at call site c

30 for each variable version pi in m, L(p) = ℓ,
such that pi reaches call site c and p =
Callee2Callerin(c, n, fin), where fin∈F

n
in

31 for each (v, Cv, Pv) ∈ Loc(pi)
32 PtrSet(fin) ∪= {v}
33 for each (f, Cf , Pf) ∈ Dep(pi)
34 PtrSet(fin) ∪= PtrSet(f)

35 6 Add µ χ Derefs(Method m, Level: ℓ)
36 for each store “∗pi = . . . ” in m, L(p) = ℓ

37 Let PtrMap(pi) = (Loc(pi),Dep(pi))
38 for each (v, Cv, Pv) ∈ Loc(pi)
39 Add v = χ(v, Cv, Pv,MAY)
40 for each (fin, Cfin , Pfin) ∈ Dep(pi)
41 for each v ∈ PtrSet(fin)
42 Add v=χ(v, Cfin∧fin→v, Pfin ,MAY)
43 for each load “· · · = ∗pi” in m, L(p) = ℓ

44 Let PtrMap(pi) = (Loc(pi),Dep(pi))
45 for each (v, Cv, Pv) ∈ Loc(pi)
46 Add µ(v, Cv, Pv)
47 for each (fin, Cfin , Pfin) ∈ Dep(pi)
48 for each v ∈ PtrSet(fin)
49 Add µ(v, Cfin∧fin → v, Pfin ,MAY)

Fig. 3. Bottom-up and top-down analysis of method m at level ℓ.

satisfies Property 1 for ℓ− 1. The call graph G is traversed twice, first bottom-
up (reversal topologically) and then top-down (topologically). When points-to
cycles are detected, level ℓ is re-reanalyzed until ∆ℓ−1 is completely built. Thus,
the contexts in a transfer function may comprise the points-to relations of some
formal-ins discovered earlier at higher levels and the current level ℓ.

A context used in a callee is mapped to a caller in the standard manner by
applying the context mapping introduced in Definition 8 below.

Definition 8 (Context Mapping). Let C be a context used in a callee n in-
voked at a call site c in a method m. Callee2Callerctx(c, n, C) denotes the map-
ping of C from callee n to call site c by performing a formal-to-actual parameter
mapping. It is understood that every points-to relation in Callee2Callerctx(c, n, C)
that is not dependent on any of m’s contexts is fully evaluated (to true or false).

Figure 3 gives our algorithm for analyzing a method m at level ℓ. We describe
the bottom-up phase first but both phases may have to be understood together.

To soundly capture path correlation, the path assigned to a variable at any
of its definition site must not under-approximate the scope of its definition.

1 BottomUp: Add µ χ Callsites Due to Property 1(c), SPAS proceeds to expose
the MAY-USEs and MAY-DEFs for each pointer at level ℓ that is accessed at
a call site c. This is done by simply examining the context condition C

may
fout

of MOD(n, fout) (Definition 5) and the context condition Cfin of USE(n, fin)
(Definition 6) of each callee n invoked at c, which were computed earlier during

10 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

the same bottom-up phase. In line 13, the path for a χ operation is safely over-
approximated as Pc, i.e., the path of call site c, where fout may be defined.
As SPAS tracks path-sensitivity intraprocedurally, the path condition for a µ

operation at a call site is irrelevant and thus marked with a ‘∗’.
Let us see how the MAY-USE and MAY-DEF are added for the call site

cfoo to foo in main in Figure 2(b), given the transfer functions of foo in (4). In

line 12, Cmay
f = Callee2Callerctx(cfoo, foo, C

may
f) = true since by Definition 8,

C
may
f = x → f is mapped to a → f at the call site, which is generated locally in

main. So the MAY-DEF, f = χ(f, true, true,MAY), is added. The MAY-USE,
µ(q, true, ∗), is added since Cq = true in USE(foo, q).

2 BottomUp: Build SSA Once all MAY-USEs and MAY-DEFs are exposed
for the pointers at level ℓ accessed, they can be put in SSA by applying the
classic SSA construction algorithm [5], as illustrated in Figure 2.

3 BottomUp: Pointer Inference Table 1 lists the seven rules for resolving the
points-to maps for the pointers at level ℓ in a method m. The first six rules are
illustrated in Figure 2 and the last partially when Add µ χ Callsites is discussed.

The propagation of points-to information across an assignment may be
guarded by both a context condition and a path condition. We define P(x) ×
Cx × Px = {(v, Cv ∧ Cx, Pv ∧ Px) | (v, Cv, Pv) ∈ P(x)}. P(x) ∪ P(y) includes
all and only elements in P(x) and P(y) such that if (v, Cx

v , P
x
v) ∈ P(x) and

(v, Cy
v , P

y
v) ∈ P(y), then both are merged as (v, Cx

v ∨ Cy
v , P

x
v ∨ P y

v).
Loc-Init is self-explanatory. As SPAS is intraprocedurally path-sensitive, the

path Ppi=&a is generated locally in method m. Dep-Init is applied to a copy of
the form p0 = p, where p is a formal-in of method m. Such copies are added at
the entry of m for all its formal-ins. The path condition is over-approximated as
true since p0 may point to whatever p point to on entry of the method considered.

Assn applies to every other copy assignment. The points-to relations at the
RHS are propagated to the LHS, guarded by the path of the assignment.

Rules Mu and Chi are also easy to understand. The context and path con-
ditions in a χ or µ operation serve as the guards to enforce context- and path-
sensitivity. According to the second constraint for Chi, the old points-to relations
of v are weakly updated, i.e., simply propagated from vt to vs unchanged.

Let us consider Rule Phi. For each operand, we use the path along which its
value flows into the result as the guard to propagate its points-to relations into
the result. In a FSCS pointer analyzer that does not consider path-sensitivity,
the two unguarded constraints pi ⊇ pj and pi ⊇ pk are generated. Applying
these two would yield the two spurious points-to relations shown in Figure 1(d).

Finally, Rule Call is applied to a call site c in the standard manner. In lines
C4 and C7, constraints are generated to propagate the points-to relations created
by a callee n in Loc(fout) and Dep(fout) to vs, guarded by the (mapped) context
conditions Co and Cfin , respectively; but the paths created inside the callee are
ignored (and hence, the ∗’s). In line C8, v is weakly updated as in Rule Chi.

4 BottomUp: Comp MOD USE Funs For each formal-out fout ∈ F
m
out at level

ℓ, we write fmax
out for its last SSA version in method m. Let PtrMap(fmax

out) =

SPAS: Scalable Path Sensitive Pointer Analysis 11

Rule Statement Constraints Inference Operations

Loc-Init pi = &a (on path Ppi=&a) pi ⊇ {a}
Loc(pi) = {(a, true, Ppi=&a)}
Dep(pi) = ∅

Dep-Init p0 = p (a formal-in) p0 ⊇ p
Loc(p0) = ∅
Dep(p0) = {(p, true, true)}

Assn pi = qj (on path Ppi=qj) pi ⊇true×Ppi=qj
qj P(pi) = P(qj)× true× Ppi=qj

Mu
µ(vk, Cvk

, Pvk
)

pi ⊇Cvk
×Pvk

vk P(pi) ∪= P(vk) × Cvk
× Pvkpi = ∗qj

Chi
∗pi = qj vs ⊇Cvs×Pvs

qj P(vs) ∪= P(qj) × Cvs
× Pvs

vs = χ(vt, Cvs
, Pvs

,MAY) vs ⊇ vt P(vs) ∪= P(vt)

Phi

pi=φ(pj , pk)

(P
p
φ
j

(P
p
φ

k

) is the path of the

incoming edge along which the
value of pj (pk) flows into pi)

pi ⊇true×P
φ
pj

pj

pi ⊇true×P
φ
pk

pk

P(pi) = P(pj) × true× Pφ
pj

P(pi) = P(pk) × true× Pφ
pk

Call

call site c invoking callee n

vs = χ(vt, Cvs
, Pvs

,MAY)

(Pvs
is the path Pc of c

inserted in line 13 in Figure 3)

C1 v = Callee2Callerout(c, n, fout)
C2 Let MOD(n, fout) = (Loc(fout),Dep(fout), ∗)
C3 for every (o, Co, ∗) ∈ Loc(fout)
C4 Generate vs ⊇Callee2Callerctx(c,n,Co)×Pvs

{(o, true, true)}
C5 for every (fin, Cfin , ∗) ∈ Dep(fout)
C6 w = Callee2Callerin(c, n, fin) such that wi reaching c
C7 Generate vs ⊇Callee2Callerctx(c,n,Cfin

)×Pvs
wi

C8 Generate vs ⊇ vt

Table 1. Rules for resolving points-to maps PtrMap(x) = {Loc(x),Dep(x)} in method
m for level ℓ. Each of the last five is applied once for P = Loc and once for P = Dep.

(Loc(fmax
out),Dep(fmax

out)), which is already available. Then MOD(m, fout) is de-
fined to be (Loc(fmax

out),Dep(fmax
out), Cmay

fout
), where C

may
fout

is set as true if fout is
directly modified in method m and set otherwise as a disjunction of the context
conditions in all its MAY-DEF sites, i.e., all χ operations of fmax

out in method m.
For a formal-in fin ∈ F

m
in at level ℓ, we write f0

in for its first SSA version in m.
Thus, USE(m, fin) = (PtrSet(fin), Cfin), where Cfin is true if f0

in is directly used
in methodm and otherwise as a disjunction of the context conditions at all MAY-
USE sites, i.e., µ operations of f0

fin
in m. PtrSet(fin) is computed later by Re-

solve PointsToSets and subsequently used in lines 41 and 48 of Add µ χ Derefs.
In Figure 2(b), the MOD and USE functions of foo are given in (4).

5 TopDown: Resolve PointsToSets The points-to sets of the pointers at level
ℓ in method m can now be obtained by resolving all formal-ins (lines 32 and 34).

6 TopDown: Add µ χ Derefs We annotate all dereferences to the pointers at
level ℓ with MAY-USEs and MAY-DEFs. The points-to relations in Loc(pi) are
generated locally in methodm and handled straightforwardly. To deal with those
generated by m’s callers in Dep(pi) in lines 42 and 49, new context conditions are
generated. If pi points to v, because a formal-in fin does, then Cfin is strength-
ened to include fin → v to indicate the context condition under which the
MAY-USE/MAY-DEF occurs (Figure 2).

SPAS soundly tracks path correlation on top of a FSCS pointer analyser.

Theorem 1. PtrSet(p) contains all possible targets for p during any execution.

Proof sketch. In a FSCS pointer analyser without considering path-sensitivity,
the path/scope for a variable definition is taken as true. SPAS refines but never
under-approximates it at a call site (lines 8 and 13 in Figure 3) and in Rules Loc-
Init, Dep-Init, Assn and Phi (Table 1). So the soundness of SPAS follows from
that of the underlying FSCS analyser, which preserves Property 1 level-wise.

12 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

The following theorem states a well-known fact about path-sensitivity.

Theorem 2. Let PtrSetSPAS(p) (PtrSetLevPA(p)) be the points-to set of p found by

SPAS (a FSCS pointer analyser like LevPA). Then PtrSetSPAS(p) ⊆ PtrSetLevPA(p).

Proof sketch. Compared to LevPA, as argued in the proof of Theorem 1, the path
condition at a variable definition site in SPAS is either the same or strengthened.

5.4 Supporting Strong Updates

In Table 1, a χ operation vs = χ(vt, Cvs
, Pvs

,MAY) represents a MAY-DEF,
where Pvs

safely overapproximates the scope where vs is defined (Theorem 1).
In Rules Chi and Call, vs ⊇ vt is always used as only weak updates are allowed.

To support strong updates, we consider a χ operation, vs = χ(vt, Cvs
, Pvs

,Mvs
),

associated with a store “∗pi = . . . ” residing on a path Pχ in method m. Let this
χ operation be referred to as χop. In χop, Mvs

∈ {MAY,MAY+,MUST}. So
MAY+ is now identified as a special case of MAY introduced in Section 5.2. Mvs

is set as MUST when χop is a MUST-DEF. This is both context-sensitive and
path-sensitive, meaning that pi must point to v along path Pvs

in context Cvs
.

However, in the other contexts, pi → v may not hold, i.e., Pvs
may not be exact.

Mvs
is MUST when UniqueTarget(m, pi, v) is true, which is defined to hold when

(a) pi points to v uniquely whenever method m is invoked at a call site such
that pi points to v and (b) v is a concrete object in Singletons. Following [14],
Singletons is the subset of locations in O with arrays, heap objects and locals
inside recursion cycles being removed. Mvs

is set as MAY+ or MAY when χop

is a MAY-DEF, in which case, dereferencing pi may yield more than one target.
Mvs

is set as MAY+ when Cvs
= true and Pvs

is exact, meaning that pi must
point to v whenever the program is executed along Pvs

. Otherwise, Mvs
is set as

MAY, in which case, pi may or may not point to v as described in Section 5.3.
Now, constraint vs ⊇ vt used in Table 1 is augmented with the guards:

vs ⊇Cold×Pold
vt, where(Cold, Pold) =

{

(¬Cvs
, true) if Mvs

= MUST
(true, Pχ ∧ ¬Pvs

) if Mvs
= MAY+

(true, true) if Mvs
= MAY

(6)

The base version of our algorithm, shown in Figure 3, performs weak updates
only as it treats MUST and MAY+ conservatively as MAY. In our fully-fledged
algorithm, SPAS obtains improved precision since all-path strong updates, much
like Dead Code Elimination (DCE), are enabled whenMvs

is MUST. In this case,
the old points-to relations of vt at all incoming paths of the store pi = . . . are
killed if they are in the same context Cvs

. In addition, SPAS improves analysis
precision further since some-path strong updates, must like Partial DCE [22], are
also performed when Mvs

is MAY+. In this case, the old points-to relations of vt
in any context are killed along Pvs

but allowed to flow into vs along Pχ ∧ ¬Pvs
.

We only need to make small changes to our algorithm in Figure 3. Only the
path conditions for the points-to relations of pi established intraprocedurally in
Loc(pi) may be considered as being exact conservatively.

Line 8 Insert a MUST-DEF, r = χ(r, true, Pc,MUST), between lines 8 and 9
to handle the assignment of a return parameter in a function invoked at the
call site c to a locally-defined pointer r in method m (Definition 2).

SPAS: Scalable Path Sensitive Pointer Analysis 13

Line 11 Use MOD(m, fout) given in Definition 5, where its fourth component
Cmust

out is a conjunction of context conditions, one condition CP for every
possible path P from the entry to the exit of method m, such that CP is
true if fout is directly modified on P and a disjunction of context conditions
in all χ’s representing MUST-DEFs on P otherwise.

Line 13 Mvs
is MUST if Callee2Callerctx(c,n,C

must
out) holds for every callee n

checked in line 9 and MAY otherwise.
Line 39 Mvs

is MAY+ if v ∈ Singletons and pi is not defined in a cycle in the
CFG of method m (decided in Pointer Inference), and MAY otherwise.

Line 42 Mvs
is MUST if UniqueTarget(m, pi, v) holds and MAY otherwise.

(This overwrites MAY+ set for v in line 39 if UniqueTarget(m, pi, v) holds.)

The points-to maps for f1 and g1 are thus refined from (5) to those in Figure 2.

Theorem 3. With strong updates thus specified, Theorems 1 and 2 remain valid.

Proof sketch. Follows simply from the definitions of MUST, MAY+ and MAY.

6 Experimental Evaluation

We have implemented SPAS in the Open64 compiler (v4.2). We use the CUDD2.4.2
library for representing points-to relations, contexts and paths. As in [23], param-
eterised spaces are used to reduce analysis overhead and improve precision. We
evaluate the scalability of SPAS in handling (intraprocedural) path-sensitivity
by integrating it with a state-of-the-art FSCS pointer analyser, LevPA [23], which
already performs all-path strong updates (for MUST-DEFs). Despite this, SPAS
obtains points-to information with non-decreasing precision with improvements
at stores/loads that are amenable to path-sensitive pointer analysis, at a small
increase in analysis overhead. We have used all 27 C benchmarks from SPEC
CPU2000 and CPU2006 and carried out our experiments on a 3.0GHz quad-core
Intel Xeon system running Redhat Enterprise Linux 5 (kernel version is 2.6.18)
with 16GB memory. Benchmarks 253.perlbmk and 403.gcc run out of memory
under both analyzers and are thus excluded in further discussions.

6.1 Analysis Overhead

As shown in Table 2, SPAS uses 18.42% more time and 10.97% more memory
than LevPA on average. To the best of our knowledge, SPAS is the fastest path-
sensitive pointer analysis reported. Benchmarks 176.gcc and 400.perlbench

are the most costly to analyze due to many iterations required for handling func-
tion pointers and recursion cycles. From the statistics in the last nine columns,
we can see the extra analysis overhead incurred by SPAS. Column “D-Vars” gives
the number of decision variables used to encode the paths in a program using
BDDs, resulting in a slight increase in the total memory usage by SPAS for each
benchmark (measured using the memory tracing tool available in Open64).

In the last eight columns, the analysis time for a benchmark is broken down
into eight parts on computing points-to levels, generating paths (Section 5.1),
and performing the six steps of SPAS in Figure 3. In 13 out of 25 benchmarks,
Step 2 (Build SSA) and Step 3 (Pointer Inference) consume most of the analysis
time in a benchmark. These are also the very steps where SPAS spends more
analysis time than LevPA as it does extra work in handling program paths. For
186.crafty, 188.ammp, 401.bzip2 and 464.h264ref, the analysis times under
LevPA are small. SPAS adds relatively high overheads mainly in Steps 2 and 3.

14 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

Benchmark
Analysis Overhead SPAS

Time (secs) Memory (MBs)
D-Vars

Time Breakdown (secs)
LevPA SPAS(%) LevPA SPAS(%) Comp. Levels Gen. Paths Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

164.gzip 0.42 9.52 20.97 9.31 269 0.09 0.02 0.07 0.22 0.02 0.00 0.04 0.00

175.vpr 1.11 12.00 55.78 9.62 639 0.34 0.03 0.09 0.50 0.15 0.01 0.08 0.04

176.gcc 1230.76 23.62 6576.05 9.91 16043 4.05 1.02 129.99 346.20 926.12 15.70 95.73 2.71

177.mesa 8.21 19.01 247.29 12.41 6242 2.84 0.25 0.48 2.90 0.83 0.11 0.23 2.13

179.art 0.08 0.00 5.28 10.51 47 0.03 0.00 0.00 0.03 0.01 0.00 0.00 0.01

181.mcf 0.13 0.00 5.74 7.52 34 0.03 0.00 0.00 0.05 0.01 0.00 0.01 0.03

183.equake 0.09 22.20 5.62 10.47 50 0.04 0.01 0.00 0.05 0.00 0.01 0.00 0.00

186.crafty 3.65 62.73 136.44 11.33 1517 0.55 0.06 0.48 3.06 1.55 0.11 0.07 0.06

188.ammp 2.28 35.53 58.94 5.93 804 0.03 0.09 1.11 1.54 0.03 0.06 0.20 0.03

197.parser 15.31 13.46 133.60 10.60 570 0.27 0.03 0.23 1.99 13.44 0.04 1.20 0.17

254.gap 21.71 12.16 440.50 4.90 7482 1.91 0.31 4.92 7.43 4.20 0.51 4.23 0.84

255.vortex 19.37 27.36 624.01 5.24 6019 1.91 0.33 4.88 8.69 3.67 0.44 4.30 0.45

256.bzip2 0.20 0.00 13.29 10.45 144 0.06 0.00 0.03 0.07 0.01 0.02 0.01 0.00

300.twolf 1.65 21.82 64.22 7.94 520 0.52 0.03 0.09 0.80 0.37 0.00 0.08 0.12

400.perlbench 971.20 24.75 4111.17 9.11 13218 2.98 0.87 105.84 277.65 680.99 13.01 125.60 4.67

401.bzip2 0.79 36.71 24.52 16.68 530 0.17 0.02 0.03 0.66 0.07 0.01 0.01 0.11

429.mcf 0.11 18.18 4.95 24.45 37 0.03 0.00 0.00 0.03 0.03 0.00 0.00 0.04

433.milc 0.87 0.00 45.05 10.23 469 0.32 0.02 0.17 0.19 0.08 0.01 0.04 0.04

445.gobmk 14.66 12.21 682.00 16.64 3680 1.45 0.23 3.14 5.83 2.95 0.22 2.26 0.37

456.hmmer 2.71 18.15 45.97 14.00 1673 0.86 0.05 0.12 1.30 0.50 0.03 0.10 0.86

458.sjeng 1.39 21.58 55.78 11.93 1060 0.27 0.06 0.24 0.65 0.34 0.01 0.10 0.02

462.libquantum 0.32 12.50 0.00 10.41 141 0.07 0.02 0.10 0.11 0.03 0.00 0.02 0.01

464.h264ref 5.77 39.86 247.29 11.06 2457 1.44 0.16 0.80 2.97 1.37 0.16 0.47 0.70

470.lbm 0.07 14.29 5.28 11.52 19 0.04 0.00 0.01 0.02 0.00 0.00 0.00 0.01

482.sphinx3 1.76 2.84 5.74 11.98 835 0.53 0.07 0.13 0.65 0.16 0.02 0.08 0.17

Table 2. Percentage increases of analysis overhead under SPAS w.r.t. LevPA.

6.2 Path-Sensitive Precision

Table 3 shows that SPAS can obtain more precise points-to sets than LevPA at
certain loads/stores in most benchmarks. We consider only the loads/stores that
reside beyond the first branch in the CFG of a method after all its SCCs (strongly
connected components) have been collapsed. The pointers accessed indirectly at
their associated χ and µ operations (MAY/MUST-DEFs and MAY-USEs) are
the ones whose points-to information may be improved by SPAS.

We measure the number of χ’s and µ’s with improved points-to information in
two ways, indicated by their Traditional and Path-Sensitive columns. Note that
by Theorem 2, PtrSet(p)SPAS ⊆ PtrSet(p)LevPA holds for any pointer p. With the
traditional metric, the points-to set of p is said to be more precise under SPAS if
|PtrSet(p)SPAS| < |PtrSet(p)LevPA|. With the path-sensitive metric, the path, i.e.,
the scope information governing each points-to target is also taken into account.
For LevPA, the path guarding a χ or µ operation is always true. Thus, the points-
to set of p is more precise under SPAS if either |PtrSet(p)SPAS| < |PtrSet(p)LevPA|
or the guarding path for a χ or µ operation is not true (i.e., more restricted).

As shown in Table 3, SPAS has improved points-to information in most bench-
marks. Under “Traditional” for χ’s, the percentage improvements range from 0%
to 6.71% with an average of 2.61%. Under “Traditional” for µ’s, the percentages
are within 0 to 7.08% with an average of 2.49%. Under “Path-Sensitive”, the im-
provements are more significant with an average of 42.38% for χ’s and 41.07% for
µ’s. These results should be understood with some caveats. First, what SPAS is
compared with is a state-of-the-art FSCS pointer analyser that already performs
all-path strong updates. Second, SPAS obtains such improved path-sensitive pre-

SPAS: Scalable Path Sensitive Pointer Analysis 15

Benchmark

χ’s (MAY/MUST-DEFs at Stores) µ’s (MAY-USEs at Loads)
LevPA SPAS (More Precise) LevPA SPAS (More Precise)
(Total) Traditional Path-Sensitive (Total) Traditional Path-Sensitive

Total % Total % Total % Total %
164.gzip 144 6 4.17 115 79.86 165 4 2.42 128 77.58
175.vpr 232 6 2.59 135 58.19 184 7 3.80 106 57.61
176.gcc 3710 132 3.56 1356 36.55 11843 506 4.27 4701 39.69
177.mesa 3780 16 0.42 1101 29.13 5200 60 1.15 1375 26.44
179.art 6 0 0.00 6 100.00 6 0 0.00 6 100.00
181.mcf 76 0 0.00 26 34.21 144 0 0.00 65 45.14
183.equake 29 0 0.00 2 6.90 55 0 0.00 5 9.09
186.crafty 343 23 6.71 291 84.84 1007 62 6.16 860 85.40
188.ammp 475 20 4.21 418 88.00 694 46 6.63 615 88.62
197.parser 374 14 3.74 296 79.14 403 19 4.71 260 64.52
254.gap 297 6 2.02 188 63.30 5466 32 0.59 3311 60.57
255.vortex 801 11 1.37 120 14.98 3651 36 0.99 469 12.85
256.bzip2 51 0 0.00 13 25.49 109 0 0.00 33 30.28
300.twolf 106 3 2.83 33 31.13 265 17 6.42 111 41.89
400.perlbench 2938 146 4.97 1045 35.57 17084 641 3.75 7027 41.13
401.bzip2 601 13 2.16 96 15.97 1380 11 0.80 184 13.33
429.mcf 77 3 3.90 29 37.66 162 2 1.23 45 27.78
433.milc 153 0 0.00 29 18.95 287 0 0.00 34 11.85
445.gobmk 1123 58 5.16 382 34.02 2957 139 4.70 1795 60.70
456.hmmer 568 37 6.51 305 53.70 1680 119 7.08 1239 73.75
458.sjeng 343 13 3.79 268 78.13 748 32 4.28 706 94.39
462.libquantum 5 0 0.00 0 0.00 7 0 0.00 0 0.00
464.h264ref 1994 68 3.41 477 23.92 7654 121 1.58 1522 19.89
470.lbm 8 0 0.00 0 0.00 13 0 0.00 0 0.00
482.sphinx3 220 8 3.64 66 30.00 782 13 1.66 208 26.60

Table 3. Percentages of variables at χ’s and µ’s with more accurate points-to sets.

cision at small analysis overhead. Finally, such improvement can be critical for
some client applications (e.g., bug detection).

Let us look at some benchmarks in detail. In the case of 164.gzip, 176.gcc
197.parser, 400.perlbench, 429.mcf,464.h264ref, 482.sphinx3, 458.sjeng
the improvements are mostly over 3% for both χ’s and µ’s. Path-sensitive analy-
sis provides little benefits for seven benchmarks: 179.art,181.mcf,183.equake,
256.bzip2, 433.milc, 462.libquantum and 470.lbm. They are small programs
with few pointers but mostly scalar-to-array assignments. For other benchmarks
on scientific computations, such as 177.mesa, and 255.vortex , the improve-
ments are below 2%. In contrast, benchmarks such as 186.crafty, 445.gobmk
and 456.hmmer exhibit much better precision improvements. They each have a
relatively high number of decision variables, giving rise to more opportunities
for capturing path correlation.

7 Conclusion

We have presented SPAS, a path-sensitive pointer analysis that extends a recent
flow- and context-sensitive pointer analysis LevPA. Our experimental evaluation
shows that SPAS incurs reasonable analysis overhead over LevPA (on average
18.42% increase in analysis time and 10.97% increase in memory usage) and
computes more precise points-to information. Our results are expected to provide
insights for developing client-driven pointer analysis techniques.

Acknowledgement

This work is supported the Australian Research Council Grant DP0987236.

16 Yulei Sui 1, Sen Ye 1, Jingling Xue 1, Pen-Chung Yew 2

References

1. M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDDs. PLDI’03, 38(5):114, 2003.

2. William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for
finding dynamic programming errors. SPE’00, 30:775–802, June 2000.

3. R. Chatterjee, B.G. Ryder, and W.A. Landi. Relevant context inference. In
POPL’99, page 146. ACM, 1999.

4. F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Effective representation of aliases
and indirect memory operations in SSA form. In CC’96, pages 253–267, 1996.

5. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Effi-
ciently computing static single assignment form and the control dependence graph.
TOPLAS’91, 13(4):490, 1991.

6. I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-sensitive
analysis. In PLDI’08, pages 270–280. ACM, 2008.

7. M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In PLDI’94, pages 242–256, 1994.

8. T. Gutzmann, J. Lundberg, and W. Lowe. Towards path-sensitive points-to anal-
ysis. In SCAM’07, pages 59–68. IEEE, 2007.

9. B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis. In POPL’09,
pages 226–238. ACM, 2009.

10. B. Hardekopf and C. Lin. Flow-Sensitive Pointer Analysis for Millions of Lines of
Code. In CGO’11, 2011.

11. V. Kahlon. Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis. In PLDI’08, pages 249–259. ACM, 2008.

12. William Landi and Barbara G. Ryder. A safe approximate algorithm for interpro-
cedural aliasing. PLDI’92, 27(7):235–248, 1992.

13. Wei Le and Mary Lou Soffa. Refining buffer overflow detection via demand-driven
path-sensitive analysis. In PASTE’07, pages 63–68. ACM, 2007.

14. Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with efficient
strong updates. In POPL’11, pages 3–16, New York, NY, USA, 2011. ACM.

15. V. Benjamin Livshits and Monica S. Lam. Tracking pointers with path and context
sensitivity for bug detection in c programs. In FSE’03, pages 317–326, 2003.

16. E.M. Nystrom, H.S. Kim, and W.W. Hwu. Bottom-up and top-down context-
sensitive summary-based pointer analysis. SAS’04, pages 165–180, 2004.

17. Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts
well: understanding object-sensitivity. In POPL’11, pages 17–30. ACM, 2011.

18. B. Steensgaard. Points-to analysis in almost linear time. In POPL’96, pages 32–41.
ACM New York, NY, USA, 1996.

19. J. Whaley and M.S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In PLDI’04, pages 131–144. ACM, 2004.

20. Y. Xie and A. Aiken. Context-and path-sensitive memory leak detection. FSE’05,
30(5):125, 2005.

21. Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. POPL’05,
40(1):351–363, 2005.

22. Jingling Xue, Qiong Cai, and Lin Gao. Partial dead code elimination on predicated
code regions. SPE’06, 36:1655–1685, 2006.

23. H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by level: making flow-and
context-sensitive pointer analysis scalable for millions of lines of code. In CGO’10,
pages 218–229. ACM, 2010.

24. J. Zhu and S. Calman. Symbolic pointer analysis revisited. In PLDI’04, page 157.
ACM, 2004.

